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B vitamins are the precursors of essential metabolic cofactors but are prone to destruction under stress conditions. It is therefore a
priori reasonable that stressed plants suffer B vitamin deficiencies and that certain stress symptoms are metabolic knock-on effects
of these deficiencies. Given the logic of these arguments, and the existence of data to support them, it is a shock to realize that the
roles of B vitamins in plant abiotic stress have had minimal attention in the literature (100-fold less than hormones) and continue to
be overlooked. In this article, we therefore aim to explain the connections among B vitamins, enzyme cofactors, and stress
conditions in plants. We first outline the chemistry and biochemistry of B vitamins and explore the concept of vitamin deficiency
with the help of information from mammals. We then summarize classical and recent evidence for stress-induced vitamin
deficiencies and for plant responses that counter these deficiencies. Lastly, we consider potential implications for agriculture.

The great pioneers of modern plant physiology pointed
out that B vitamins havemuch in commonwith hormones
and even classified some vitamins as plant hormones (i.e.
plant growth regulators in today’s terms;Went et al., 1938;
Bonner and Bonner, 1948; Thimann, 1963). In plants, as in
animals, B vitamins and hormones are biologically active
in minute amounts, are transported, and lead to similarly
profound consequences when deficient (Bonner and
Bonner, 1948). B vitamins and hormones might conse-
quently be expected to have received comparable research
attention. This has broadly been the case in biomedical
research since vitamins and hormones were first discov-
ered (Kohler, 1975). It has almost never been the case in any
area of plant research, including abiotic stress. Thus, in the
Arabidopsis (Arabidopsis thaliana) abiotic stress literature,
articles involving hormones outnumber those involving B
vitamins by a factor of 100 (Supplemental Table S1).

This stunning disparity suggests two things about
past and present thinking in the abiotic stress field.
First, it indicates a prevalent default assumption that
the whole of B vitamin metabolism always and every-
where continues to work well in stressed plants and so
can be safely ignored. Second, it signals a lack of at-
tention to the possibility that stress-induced defects in B
vitamin metabolism can be intermediate causes of

system-wide plant stress responses. Neither the default
assumption nor the inattention is reasonable a priori
and they are not justified by the available evidence.

This review sets out to show that B vitamin deficiency
is a simple, probable, but overlooked scenario in abiotic
stress responses.We begin by providing key background
information on the chemical and metabolic lability of B
vitamins and the cofactors derived from them and on the
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concept of vitamin deficiency derived from work in ani-
mals.We then revisit classical studies that point clearly to
roles for B vitamins in abiotic stress, but are no longer in
the modern canon, and assess recent evidence for such
roles. Next, we outline how plants combat stress-induced
B vitamin deficiencies. Lastly, we consider how under-
standing stress-induced vitamin deficiency could inform
crop breeding and management.
Two points should be made at the outset. First, there

has beenmuch research on the B vitamin contents of food
plants and on B vitamin synthesis and metabolism in
plants. However, the main, if not sole, driver for this
valuable work has been plants as vitamin sources for
humans rather than plants as vitamin sources for them-
selves (Fitzpatrick et al., 2012; Gerdes et al., 2012). This
article takes the complementary position that “plants
need their vitamins too” (Smith et al., 2007). Second, re-
search on vitamin C (ascorbate) shows that plant stress
biology does not invariably sideline vitamins (Foyer and
Noctor, 2011). This article argues that B vitamins deserve
as much attention as vitamin C.

CHEMICAL AND METABOLIC LABILITY: WHY BAD
THINGS HAPPEN TO GOOD VITAMINS

B vitamins are indispensable because they are the
metabolic precursors of essential cofactors. Figure 1 shows

the seven B vitamins found in plants, along with the
cofactors to which they are converted. In brief: Thiamin
(vitamin B1) is converted to thiamin diphosphate; ri-
boflavin (vitamin B2) to FMN and FAD; niacin (vitamin
B3) to NAD(P)+; pantothenate (vitamin B5) to coenzyme
A and the prosthetic group of acyl carrier protein;
pyridoxine (vitamin B6) to pyridoxal 59-phosphate; bi-
otin (vitamin B8) to the biotinyl side chain of enzymes;
and tetrahydrofolate (historically termed vitamin B9) to
various one-carbon substituted folates and their poly-
glutamylated derivatives.

Cofactors function by participating in biochemical
reactions, e.g. thiamin diphosphate forms covalent
complexeswith carbonyl substrates, FAD andNAD(P)+

become reduced as substrates are oxidized, and coenzyme
A forms thioesters with acyl groups. Cofactors and their
vitamin precursors are thus chemically reactive by
nature. Their chemically reactive groups are therefore
prone to undergo spontaneous side-reactions such as
oxidation, hydrolysis, racemization, or addition that
damage or destroy the molecule, and stress conditions
promote such side-reactions (Piedrafita et al., 2015).
For example, most abiotic stresses cause accumulation
of reactive oxygen species (You and Chan, 2015) that
can inflict oxidative damage on every compound in
Figure 1. Similarly, temperature extremes, high light
levels, pH excursions, and stress-driven accumulations

Figure 1. Structures and damage reactions of the seven B vitamins found in plants and of representative cofactors derived from
them. The vitamin moieties are highlighted in blue. Note that folates generally have a short g-linked poly-Glu chain attached to
the glutamyl moiety. Color-coded arrows show the site and nature of spontaneous chemical or enzymatic damage reactions that
each vitamin/cofactor can undergo in vivo. The damage reactions involved are documented in Table I.
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of metabolites with which cofactors react all directly
accelerate diverse types of spontaneous cofactor dam-
age (Treadwell and Metzler, 1972; Baggott, 2000; Mills
et al., 2006; Marbaix et al., 2011). Abiotic stresses can
also promote cofactor damage indirectly by altering
compartmentation (Akhtar et al., 2010; Mohammadi
et al., 2012) by inducing enzymes that break down co-
factors (Rapala-Kozik et al., 2008; Higa et al., 2012) and
by creating harsh cellular conditions in which enzymes
that normally act on other substrates become more
promiscuous (Piedrafita et al., 2015) and mistakenly
attack cofactors.

Figure 1 uses color-coded arrows to show the site and
nature of damage reactions that vitamins and cofactors
can undergo in physiological conditions, and Table I
catalogs the reactions corresponding to the arrows.
Note that Figure 1 is bristling with arrows, which helps
explain why most of the B vitamins/cofactors made
it into a “Top 30” list of damage-prone metabolites
(Lerma-Ortiz et al., 2016) and why all organisms have
dedicated systems to deal with vitamin/cofactor
damage (Linster et al., 2013). “Bad things happen”
to B vitamins and cofactors because these com-
pounds are basically chemical andmetabolic “accidents
waiting to happen.” Also, unlike many other reactive
metabolites, cofactors are end-products, not short-lived

intermediates that are quickly converted to something
else. The longer an end-product lives, the higher the
probability of its getting damaged at some point.

Thiamin diphosphate deserves special mention for
metabolic lability because, unlike other cofactors, it can
be damaged during the catalytic cycle (catalysis-
induced inactivation; McCourt et al., 2006). Oxygen-
dependent side-reactions in enzyme active sites
convert the thiamin diphosphate cofactor to an inactive
thiazolone derivative (Sümegi and Alkonyi, 1983;
Bunik et al., 2007). Such use-dependent damage ex-
plains why thiamin is the only B vitamin whose dietary
requirement in animals is proportional to nonfat energy
intake (McCourt et al., 2006). More generally, the
damage reactions undergone by all B vitamins account
for their dietary requirements; if vitamins were not
continuously damaged, theywould last forever and not
need to be constantly resupplied. In this context, it is
noteworthy that the whole-body half-life of thiamin
(and its phosphates) in humans is one to two orders of
magnitude shorter than those of other B vitamins for
which estimates are available, as follows: thiamin, 9.5 to
18.5 d (Ariaey-Nejad et al., 1970); folates, 60 to 150 d
(Gregory and Quinlivan, 2002); vitamin B6, ;500 d
(Coburn, 1990); vitamin B12 (absent from plants), 480 to
1284 d (Hall, 1964).

Table I. Chemical and enzymatic damage reactions of B vitamins and the corresponding cofactors

Vitamin/Cofactor Reactions C/Ea Referencesb

Thiamin (vitamin B1)/thiamin
diphosphate

Pyrimidine ring deamination C Windheuser and Higuchi (1962)
Thiazole ring oxidation C,E Bunik et al. (2007); Dwivedi and Arnold (1973)
Thiazole ring breakdown C Jenkins et al. (2007)
Oxidation to thiamin acetate E Dalvi et al. (1974)
Hydrolysis to thiazole + pyrimidine E Jurgenson et al. (2009)
Dephosphorylation E Rapala-Kozik et al. (2009)
Thiamin triphosphate formation E Linster et al. (2013)

Riboflavin (vitamin B2)/FMN, FAD (Photo)oxidative flavin ring loss C Choe et al. (2005)
(Di)phosphate bond hydrolysis E Ogawa et al. (2008); Rawat et al. (2011)
7a- and 8a-hydroxylation E Ohkawa et al. (1983)
Cyclic FMN formation from FAD C,E Pinto et al. (1999); Sánchez-Moreno et al. (2009)

Niacin (vitamin B3)/NAD(P)(H) Hydration of nicotinamide ring C,E Marbaix et al., (2011)
Epimerization of b- to a-NAD(P)H C Oppenheimer and Kaplan (1975)
Hydrolytic loss of nicotinamide ring E Everse et al. (1975)
Diphosphate bond hydrolysis E Ogawa et al. (2008)
Nicotinamide ring addition reactions C Everse et al. (1971)

Pantothenate (vitamin B5)/
coenzyme A, ACPc

Oxidations of the thiol group C Huang et al. (2016)
Diphosphate bond hydrolysis E Ogawa et al. (2008)
Hydrolysis of the 39 phosphate group E Paizs et al. (2008)

Pyridoxine (vitamin B6)/pyridoxal
59-phosphate

Aldehyde group oxidation C/E Gerdes et al. (2012)
Aldehyde group condensations C Dalling et al. (1976)
Dephosphorylation E Gerdes et al. (2012)
6-Hydroxylation C Tadera et al. (1986)

Biotin (vitamin B8)/biotinylated
enzymes

Oxidation to biotin sulfoxide C Melville (1954)
Side chain b-oxidation E Izumi et al. (1973)

Tetrahydrofolate/C1-substituted
folates

Oxidative cleavage of C9-N10 bond C Gregory (1989)
Pteridine ring oxidation C/E Noiriel et al. (2007)
5-Formyltetrahydrofolate formation C/E Baggott (2000); Goyer et al. (2005)
g-Glutamyl bond hydrolysis E Orsomando et al. (2005); Bozzo et al. (2008)

aC, chemical (i.e. nonenzymatic, spontaneous) reaction; E, enzymatic reaction or side-reaction. bCertain reactions have so far been reported
only from animals or microbes. cACP, acyl carrier protein, which has a bound 4’-phosphopantetheinyl prosthetic group derived from coenzyme A.
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WHAT ACTUALLY CONSTITUTES B
VITAMIN DEFICIENCY?

The concept of vitamin deficiency comes from human
and animal nutrition; it refers to the consequences of a
shortfall in the dietary supply of a specific vitamin.
Because plants make their own B vitamins, and indeed
are the ultimate source of most of the B vitamins con-
sumed by animals, the concept of “B vitamin deficiency”
might seem inapplicable to plants, and hence irrelevant.
But, aswewill show, this concept is actually very relevant
to plants.
Key questions about B vitamin nutrition in animals

are: What dietary intake of each vitamin is needed for
optimal growth and health? Also, what happens
when the supply of a vitamin falls below the optimal
level? Both questions are often answered by measur-
ing weight gain in young animals given various
vitamin doses in the diet and by tracking levels of the
vitamin and its corresponding cofactor in tissues and
organs. Figure 2 (left half) summarizes data from such
studies, in which various levels of thiamin, pyridox-
ine, or folate were supplied to rats whose growth and
liver cofactor levels were monitored. Two points that
emerge from these data are as follows: (1) There is a
continuum rather than a sharp divide between vitamin
sufficiency and deficiency, and (2) the cofactor level in
liver does not have to fall much before growth is
substantially impacted (as are development, metabolic
functions, and behavior; data not shown), and declines
of 30 to 60% from optimal are devastating. Animals
therefore operate their vitamin and cofactor systems
with rather narrow margins of safety.
The same appears to be true of plants. Nutritional

trials analogous to those above have not yet been
conducted using totally vitamin-deficient mutants.
However, mutant plants partially deficient in thiamin
or vitamin B6 have been studied (Woodward et al.,
2010; Rueschhoff et al., 2013), as have cultured cells
depleted in folate using a reasonably specific anti-
folate drug (Loizeau et al., 2008; Fig. 2, right half).
Although these experiments produced a single defi-
cient state, not a range as in rats, the data clearly
suggest that a 25 to 40% loss of cofactor leads to se-
vere consequences. To summarize: The red zone on
the B vitamin fuel gauge seems to be in roughly the
same place in plants and animals and is quite close to
the full mark.
A subsidiary concept within vitamin deficiency is

“functional vitamin deficiency,” wherein vitamin and
cofactor measurements need not show marked deple-
tion but strong metabolic disturbances nevertheless
ensue. A prime example is vitamin B12 (absent from
plants), whose deficiency in humans is better diagnosed
by its metabolic consequences (elevated levels of
methylmalonic acid and homo-Cys) than by measuring
B12 itself (Stabler et al., 1996). Another example is folate,
for which, in contrast to B12, deficiency causes elevation
only of homo-Cys and not of methylmalonic acid
(Green, 2008). Functional deficiencies of other B vitamins

in humans generally affect enzymes having theweakest
affinity for their cofactor relative to the cofactor’s in-
tracellular concentration, as is the case for vitamin B6
(Ueland et al., 2015). However, the hierarchy of bio-
chemical reactions most susceptible to deficiency of B
vitamins has not been fully clarified.

Functional vitamin deficiencies also can arise
when the deficiency occurs in a particular (inacces-
sible) tissue or compartment but does not affect the
whole organism, or at least the part convenient for
assessing vitamin or cofactor status. Such a situation
could develop in roots for thiamin and niacin be-
cause roots of certain species import these vitamins
from shoots (Bonner and Bonner, 1948). Intracellular
deficiencies are also possible given that B vitamins
and cofactors are synthesized and used in different
compartments. For example, thiamin diphosphate
is made in the cytosol but used mainly in plastids
and mitochondria (Rapala-Kozik et al., 2012), and
vitamin B6 is made in the cytosol but used through-
out the cell (Fitzpatrick, 2011). In this connection,
note that the plastids of the vitamin B6 deficient
Arabidopsis mutant in Figure 2 were far more severely
deficient in B6 than the leaf as a whole (Rueschhoff
et al., 2013) and that a thiamin-requiring tobacco
(Nicotiana sylvestris) mutant appeared to suffer pri-
marily from thiamin deficiency in chloroplasts (McHale
et al., 1988).

EVIDENCE FOR STRESS-INDUCED B
VITAMIN DEFICIENCY

The previous sections explained that B vitamins and
cofactors are chemically and metabolically unstable,
that stresses potentially make them even more un-
stable, and that modest falls in cofactor levels slow
growth. We might therefore predict that (1) abiotic
stresses cause vitamin and cofactor deficiencies, (2)
the deficiencies degrade plant performance, and (3)
supplementing stressed plants with the deficient
vitamin(s) improves performance. Evidence from both
classical and modern work indicates that all these
things happen.

Classical Evidence

The classical evidence was considered in a short
1957 article with the evocative title “The Chemical Cure
of Climatic Lesions” (Bonner, 1957). The idea captured
in the title was that negative effects of “climatic lesions”
(i.e. physicochemical environmental stresses) could be
“cured” by applying vitamins or other essential me-
tabolites, singly or in mixtures. “Chemical cures” by B
vitamins were reported for various plants and various
abiotic stresses during the 1940s to 1960s; typical data are
shown in Figure 3. In each case, applying a vitamin or
vitamin mixture promoted growth in unfavorable
conditions but not in favorable ones. These results are
de facto confirmation that stress can lead to functional
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B vitamin deficiency. Importantly, the Arabidopsis
work in Figure 3 gave stress-induced vitamin defi-
ciency a genetic basis by defining ecotypic differences
attributable to one or a few genes (Langridge and
Griffing, 1959). This is the pattern expected if the en-
zymes that use a particular cofactor bind to that co-
factor with different strengths. When the vitamin
starts to run out and cofactor levels fall, the weakest
binder loses activity first, and small allelic differences
in the affinity of this enzyme for the cofactor become

critical determinants of performance of the organism
as a whole (Guenther et al., 1999).

Modern Evidence

Although the exogenous application approach
(“spray and pray”) has fallen out of fashion, it can be
perfectly valid, and beneficial effects of applying B
vitamins, particularly thiamin, to stressed crop spe-
cies continue to be reported, e.g. for salinized wheat

Figure 2. Comparing growth responses to deficiencies of thiamin, B6, or folate in rats versus plants. The decline from vitamin sufficiency
todeficiency is approximatedbya color gradient. For rats, deficiencieswereobtainedby varyingdietary vitamin content; liverwas used to
assess vitamin status. For plants, the experiments involved vitamin deficient mutants (blk-1 for thiamin in maize; pdx1.3 for B6 in Ara-
bidopsis) or cell cultures treatedwith an antifolate drug for folate inArabidopsis.Whole plants, leaves, or cellswere used to assess vitamin
status.Data sources: rat thiamin (Rains et al., 1997), rat B6 (Mackey et al., 2003; Scheer et al., 2005), rat folate (Clifford et al., 1993),maize
thiamin (Woodward et al., 2010), Arabidopsis B6 (Rueschhoff et al., 2013), and Arabidopsis folate (Loizeau et al., 2008).
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(Triticum aestivum), sunflower (Helianthus annuus),
and maize (Zea mays; Al-Hakimi and Hamada, 2001;
Sayed and Gadallah, 2002; Tuna et al., 2013; Kaya
et al., 2015). Also, a rigorous Arabidopsis study
showed that thiamin enhances tolerance to oxidative
stress imposed by paraquat (Tunc-Ozdemir et al.,
2009). Such protective effects of thiamin on stressed
plants are generally interpreted in terms of the anti-
oxidant properties of thiamin and its diphosphate
(Lukienko et al., 2000), but the in vivo relevance of
these properties has been questioned (Lesgards et al.,
2005), and it is not clear that the observed protection
is due to direct antioxidant effects (Asensi-Fabado
and Munné-Bosch, 2010). The experimental data are
equally compatible with the protection being due to
relief of a functional deficiency of thiamin diphos-
phate and the consequent restoration of normal
metabolic fluxes. Although bias from prior positive
reports may be at work, it is interesting that thiamin
features so prominently in the literature on vitamin
application, given that thiamin and thiamin diphos-
phate are particularly labile in vivo (see above). It is
also interesting in the light of the extremely high

energetic cost and inefficiency of thiamin biosyn-
thesis (Box 1), to which we will return later.

Further modern support for stress-induced defi-
ciency of four different B vitamins has come from
molecular genetics, as follows. (1) Pyridoxine: The
Arabidopsis SOS4 (SALT OVERLY SENSITIVE4) gene
for pyridoxal kinase was cloned via the salt-sensitive
phenotype of sos4 mutants, which was reverted by
pyridoxine (Shi et al., 2002), a textbook “cure” of a
stress lesion. Arabidopsis mutants in the PDX1.3
gene for pyridoxal 59-phosphate synthase were found
to be hypersensitive to salt, osmotic, and oxidative
stress (Chen and Xiong, 2005; Titiz et al., 2006). (2)
Pantothenate/coenzyme A: The Arabidopsis HAL3A
(HALOTOLERANCE DETERMINANT 3A) gene, first
identified for its relation to stress tolerance (Espinosa-
Ruiz et al., 1999), was shown to code for a key enzyme
in pantothenate conversion to coenzyme A (Kupke
et al., 2001), and HAL3A overexpression increased salt
tolerance (Espinosa-Ruiz et al., 1999; Yonamine et al.,
2004). (3) Folate: Ablation of the Arabidopsis gene
encoding a cytosolic folate synthesis enzyme (HPPK/
DHPS) specifically impacted salt and oxidative stress

Figure 3. Classical data on the chemical
cure of high- or low-temperature growth
lesions. Day/night temperatures are in
°C. +, Vitamin(s) added; –, no vitamin;
differences significant at *P , 0.05
and **P , 0.01. The data are for spe-
cies of the ornamental plant Cosmos
(Bonner, 1943), for Arabidopsis (Langridge
and Griffing, 1959), and for other species
(Ketellapper, 1963).
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resistance at germination (Storozhenko et al., 2007;
Navarrete et al., 2012). (4) Riboflavin: The Arabidopsis
phs1 (PHOTOSENSITIVE1) mutant, first identified by its
sensitivity to high-light stress (Ouyang et al., 2010), was
found to lack a functional domain of the riboflavin

biosynthesis enzyme PyrR (Hasnain et al., 2013; Frelin
et al., 2015). Note the pattern here: Either a gene identified
via a stress-sensitive phenotype turned out to be a B
vitamin or cofactor synthesis enzymeor ablating a known
B vitamin/cofactor enzyme caused stress sensitivity.
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COUNTERING STRESS-INDUCED B
VITAMIN DEFICIENCY

Conceptually, resource deficiencies can be countered
by (1) maintaining and then mobilizing reserves, (2)
obtaining more of the resource, (3) repairing or recy-
cling it, or (4) using less of it. Plants certainly deploy
strategies 2 and 3 to confront B vitamin deficiency and
potentially deploy the others.

Strategy 1: Storing and Mobilizing B Vitamins
and Precursors

Storage forms of B vitamins have had little attention
in the plant literature, in sharp contrast to storage forms
of hormones (Ludwig-Müller, 2011; Piotrowska and
Bajguz, 2011). Storage forms of vitamins and vitamin
precursors, mainly glucosides and Glc esters, never-
theless exist and some can reach higher concentrations
than the corresponding free forms (Gregory, 1998). The
only B vitamin for which no storage forms have been
reported is thiamin. Storage forms have not been ana-
lyzed in abiotic stress studies, perhaps because they
are not commercially available as standards. Unfor-
tunately, this means that the contribution of storage
forms to B vitamin homeostasis during stress remains

unresolved; however, this contribution could be large.
The main storage forms are shown in Figure 4 and
described below, starting with the two vitamins (B6
and B3) whose storage forms are reported to be more
abundant than the free forms in certain species and
tissues.

Pyridoxine (B6)

The 59-b-D-glucoside of pyridoxine, and other gly-
cosides linked via the 4- or 5-hydroxymethyl groups,
can contribute up to 75% of the total vitamin B6 in plant
tissues (Gregory, 1998), i.e. they can be the largest item
in the B6 budget. A glucosyltransferase responsible for
pyridoxine-59-b-D-glucoside synthesis has been detec-
ted in pea (Pisum sativum; Tadera et al., 1982); enzy-
matic hydrolysis of the glucoside has been shown
in vitro (Yasumoto et al., 1976), so it can presumably be
mobilized in vivo.

Niacin (B3)

Nicotinic acid-N-b-D-glucoside andN-methylnicotinate
(trigonelline) are widespread in plants and can be major
metabolites of nicotinamide and nicotinate (Matsui et al.,

Figure 4. Structures of conjugated forms of B vitamins and their precursors that occur in plants. The molecules to which the
vitamins and precursors are conjugated are colored blue.
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2007; Ashihara et al., 2010); more complex glycosides
also occur (Gregory, 1998). Enzymes that would allow
the N-glucoside and trigonelline to act as mobilizable
storage forms have been characterized (Upmeier et al.,
1988; Shimizu and Mazzafera, 2000; Mizuno et al.,
2014). Brassicaceae contain the b-D-glucosyl ester of
nicotinic acid, which almost certainly acts as a mobi-
lizable storage form (Li et al., 2015).

Pantothenate (B5)

Pantothenate 4’-O-b-D-glucoside has been isolated
from tomato fruit (Solanum lycopersicum; Amachi et al.,
1971) and is most likely present in a wide range of
species and tissues (Yoshizumi and Amachi, 1969).
Glycosides of the lactone form of pantoate, the im-
mediate precursor of pantothenate (pantoyllactone-
b-D-glucopyranoside and pantoyllactone primeveroside)
occur in rice (Oryza sativa) seedlings, the levels in co-
leoptile tissue being in the millimolar range (Menegus
et al., 2002). These pantoate derivatives seem not to
have been sought in any plant besides rice; they could
conceivably be widespread.

Tetrahydrofolate Precursors

The precursor p-aminobenzoate was converted to its
b-D-glucosyl ester by all tissues and species tested and
was found to be the major endogenous form of p-ami-
nobenzoate (Quinlivan et al., 2003). The esterification
reaction is reversible and the ester is stored in vacuoles
(Eudes et al., 2008). Glycosides (probably b-D-gluco-
sides) of the tetrahydrofolate precursors neopterin and
monapterin were found in tomato fruit engineered to
overproduce pterins (Díaz de la Garza et al., 2004); it is
not known whether such glycosides occur naturally or
whether they can be mobilized.

Riboflavin (B2)

The alpha and beta forms of riboflavin-59-D-glucoside
have been found in germinating barley (Hordeum vulgare)
seedlings supplied with riboflavin (Suzuki and Uchida,
1983). As with the pterin glycosides above, it is it is not
known whether riboflavin glucosides occur naturally or
whether they can be mobilized.

Biotin (B7)

While no small-molecule conjugates of biotin have
been reported, a biotinyl protein that represents .90%
of the total protein-bound biotin has been characterized
and cloned from pea seeds (Dehaye et al., 1997) and is
conserved among higher plants (Gerdes et al., 2012).

Strategy 2: Increasing B Vitamin Supply

Many analyses of gene and protein expression have
indicated that abiotic stresses up-regulate flux through

some but not all B vitamin biosynthesis pathways and
studies of the effects of stress on the levels of vitamins
and cofactors tend to support this inference. As is usual
in stress research, differences in experimental design
(the species and tissue used, the timing, duration,
and severity of stress, and the analysis methods ap-
plied, i.e. blots/microarrays/RNA-seq, etc.) preclude
meta-analysis of all the data. Below, we therefore
focus first on a high-throughput data set, the AtGen-
Express global stress expression data set (available at
http://jsp.weigelworld.org/expviz/expviz.jsp), sup-
plemented with broadly comparable data from several
independent Arabidopsis stress studies (Supplemental
Table S2). We then highlight illustrative articles on pyr-
idoxine and thiamin.

Note that even when a vitamin biosynthetic pathway
is clearly upregulated in response to stress, stress-
induced vitamin or cofactor deficiency may still occur
for several reasons. First, activating biosynthetic gene
expression may fail to increase vitamin production due
to downstream constraints, e.g. the energy cost of
making THI4 protein for thiamin biosynthesis (see be-
low and Box 1). Second, as noted above, a high vitamin
or cofactor status, as measured in whole organs, tissues,
or cells, can obscure functional deficiencies within
subcompartments. Lastly, conversion of vitamins to
cofactors may become limiting, so that increases in
vitamin levels do not always result in higher cofactor
levels. Cofactor levels can consequently fall even when
free vitamin levels rise, and cofactor levels, not vitamin
levels, determine metabolic outcomes.

Arabidopsis Gene Expression

The stresses used for the AtGenExpress global stress
expression data set (heat, cold, drought, salt, high os-
molarity, UV-B light, and wounding) were essentially
single-regime shock treatments, lasting 24 h or less,
given to Arabidopsis seedlings (Kilian et al., 2007); the
protocols in the other studies listed in Supplemental
Table S2 were quite similar. The transcriptional re-
sponses observed in these experiments therefore nec-
essarily only included part of the plant’s full repertoire.
These responses nonetheless follow the coherent pat-
tern seen in Figure 5, a bird’s-eye schematic of B vitamin
synthesis and salvage pathways in which enzymes are
represented by rectangles. The color density of each
enzyme is proportional to the number of different
stresses that induce the corresponding gene by 2-fold or
more. The pathways are arranged in order of preva-
lence of gene induction. At one extreme (biotin, pan-
tothenate/CoA, and tetrahydrofolate pathways), just
one or two biosynthetic genes are induced by a single
stress, whereas at the other extreme (vitamin B6 and
thiamin pathways), all the known biosynthetic genes
are induced by at least three stresses. Except for B6, the
prevalence of induction of salvage genes basically
tracks that of biosynthetic genes. This overview of gene-
level data thus indicates that certain B vitamin biosyn-
thesis pathways, particularly those for B6 and thiamin,
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are upregulated by several abiotic stresses and that
others, such as the tetrahydrofolate pathway, are largely
not. Vitamin/cofactor analysis data and protein-level
data for vitamin B6 and thiamin are consistent with this
picture, as discussed next.

Vitamin B6

Pyridoxal 59-phosphate is made by the pyridoxal
synthase complex, which consists of two proteins, PDX1
andPDX2 (the two red-colored boxes in the pyridoxal 59-
phosphate section of Fig. 5). Arabidopsis has three PDX1
homologs, of which PDX1.1 and PDX1.3 are active en-
zymes and PDX1.2 is a positive regulator (Titiz et al.,
2006; Moccand et al., 2014). Paralleling the stress in-
duction of Arabidopsis PDX genes (Fig. 5; Supplemental
Table S2), PDX1.3 protein accumulated and the total B6
level increased by 60% in response to UV-B exposure
(Ristilä et al., 2011); total B6 also increased by 60% in
response to heat stress (Moccand et al., 2014). Levels of
pyridoxal 59-phosphate and free pyridoxal or pyridoxine
likewise increased by about 2-fold in tobacco exposed to
chilling, UV radiation, osmotic stress, oxidative stress, or
drought (Huang et al., 2013).

Thiamin

Thiamin is synthesized by a pathway that is very
energetically expensive because the thiazole moiety is

made by a suicide enzyme (THI4), and the pyrimidine
moiety is made by a radical SAM (S-adenosyl-Met)
enzyme (THIC) that probably lasts for only a few
catalytic cycles (Box 1). Paralleling the stress induc-
tion of Arabidopsis THI4, THIC, and other thiamin
synthesis genes (Fig. 5; Supplemental Table S2), the
level of total thiamin and of its components (thiamin
mono- and diphosphates and free thiamin) increased
by up to 2-fold in Arabidopsis seedlings subjected
to cold, osmotic, salinity, or oxidative stress (Tunc-
Ozdemir et al., 2009). Similarly, total thiamin increased
by up to 60% in Arabidopsis seedlings exposed to
salt, osmotic, or oxidative stress, with free thiamin
contributing as much or more than thiamin diphos-
phate to the increase (Rapala-Kozik et al., 2012). Also
similarly, in maize seedlings subjected to water, salt,
or oxidative stress, total thiamin increased by 70 to
150%, due to increases in free thiamin and thiamin
monophosphate (Rapala-Kozik et al., 2008). How-
ever, in this case levels of the cofactor thiamin di-
phosphate stayed constant or fell by up to 30%, which
is quite enough to cause severe deficiency symp-
toms (Fig. 2) and illustrates the point made above
about cofactor levels falling even though free vitamin
levels rise.

Given the suicide nature of the THI4 enzyme, it is
striking that THI4was the most highly or secondmost
highly induced gene in cotton (Gossypium hirsutum)
seedlings exposed to cold, drought, salt, or high pH

Figure 5. Stress induction of B vitamin and cofactor synthesis and salvage genes in Arabidopsis. Synthesis and salvage pathways
for each vitamin are schematized as by Gerdes et al. (2012) except for the omission of compartmentation and the addition of two
thiamin salvage reactions (Yazdani et al., 2013; Zallot et al., 2014). Circles are metabolites, arrows are reactions, and rectangles
are enzymes. The full pathway schemes, which include enzyme and metabolite names, are available at http://pubseed.theseed.
org/seedviewer.cgi?page=PlantGateway. Enzymes whose genes are induced at least 2-fold by 0, 1, 2, or $3 different abiotic
stresses (in shoots or roots) are color-coded white and three shades of red, respectively. Gene expression data were taken from
AtGenExpress and literature summarized in Supplemental Table S2.
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stress; the induction of THI4 relative to unstressed
controls ranged from 14- to 44-fold (Zhu et al., 2013). It
is equally striking that the THI4 protein showed,
among all proteins analyzed, the second largest in-
crease in expression (3.2-fold) in heat-stressed poplar
leaves (Ferreira et al., 2006) and the third largest in-
crease in expression (3.7-fold) in heat-stressed wild
rice leaves (Scafaro et al., 2010).

Strategy 3: Repairing or Recycling Damaged B Vitamins
and Cofactors

Like other organisms, plants have enzyme systems
that deal with some of the chemical and enzymatic
damage reactions shown in Figure 1 (Linster et al.,
2013). These enzyme systems may repair damaged
vitamins and cofactors, i.e. directly restore them to the
original state, or salvage parts of damaged molecules
for reuse in biosynthesis. As vitamin and cofactor re-
pair (Hanson et al., 2016) and recycling (Gerdes et al.,
2012) were recently reviewed, we focus here on three
cases where the repair or recycling-related activity
appears to be upregulated by stress and not simply
constitutive.

Thiamin Salvage Hydrolase TenA_E

TenA_E mediates two successive steps in the re-
covery of the pyrimidine moiety from thiamin dam-
aged in the thiazole moiety (Zallot et al., 2014). The
Arabidopsis gene encoding TenA_E is upregulated by
several abiotic stresses, in common with thiamin
synthesis genes (Fig. 5; Supplemental Table S2). The
Arabidopsis gene specifying the thiazole salvage en-
zyme ThiM (Yazdani et al., 2013) is not upregulated
(Fig. 5), which fits with the thiazole moiety of thiamin
being more prone to irreversible damage than the
pyrimidine moiety, and hence not as recyclable (Zallot
et al., 2014).

Thiamin Diphosphate-Related Nudix Hydrolases

These enzymes (NUDT20 and NUDT24 in Arabi-
dopsis) are diphosphatases whose preferred sub-
strates are damaged, and toxic, forms of thiamin
diphosphate, including the previously mentioned
thiazolone form generated by oxygen-dependent
side-reactions (Goyer et al., 2013). The diphospha-
tase reaction is both a detoxification step and the first
step in salvage of the pyrimidine moiety. The Arabi-
dopsis genes (which are not distinguished by micro-
arrays) are induced between 2- and 5-fold by salt,
drought, and osmotic stress, and probably also oxi-
dative stress (Kilian et al., 2007; Goyer et al., 2013).

NAD(P)+ Salvage Module

Two enzymes mediating consecutive steps in
NAD(P)+ salvage (nicotinamidase and nicotinate

phosphoribosyltransferase) are each induced by two
stresses in Arabidopsis (Fig. 5), as is a transporter
(NiaP) for nicotinate, the intermediate that these en-
zymes share (Kilian et al., 2007). Arabidopsis NiaP also
transports trigonelline (Fig. 4) (Jeanguenin et al., 2012).
NiaP is probably located in the plasma membrane
(Jeanguenin et al., 2012), suggesting that nicotinate
salvaged in one location could be reused for NAD(P)+

synthesis in another. This would be consistent with the
classical evidence for inter-organ exchange of nicotinate
(Bonner and Bonner, 1948).

Strategy 4: Decreasing Demand for B Vitamins

Metabolism can sometimes be rerouted to bypass
certain cofactor-dependent steps, as in the phosphate
starvation response, in which alternative bypass path-
ways of cytosolic glycolysis are upregulated to spare
scarce adenylates and phosphate (Plaxton and Tran,
2011). There are as yet no cases of full-blown rerouting
in response to vitamin deficiency, although two studies
provide indirect evidence for redirection of fluxes
that may be, at least in part, active responses. In the
first study, tobacco leaves overexpressing transke-
tolase, a thiamin diphosphate-dependent enzyme, be-
came moderately thiamin diphosphate-deficient and
showed reduced isoprenoid synthesis via the thiamin
diphosphate-dependent enzyme 1-deoxy-D-xylulose
5-phosphate synthase (DXS); this reduction was as-
sociated with lower DXS transcript levels (Khozaei
et al., 2015). In the second study, a drastic, rapid-
onset tetrahydrofolate deficiency in Arabidopsis
cells treated with antifolate drugs led to initial de-
pletion of Met and S-adenosyl-Met pools, reflecting
reduction in the tetrahydrofolate-dependent flux
of one-carbon units to Met as one-carbon fluxes
were adaptively reprioritized in favor of nucleotides
(Loizeau et al., 2008). Surprisingly, the Met and
S-adenosyl-Met pools, and by inference the associated
fluxes, subsequently returned to normal, in part via a
conserved adaptive mechanism, triggered by tetra-
hydrofolate deficiency, that involves proteolytic re-
moval of the N-terminal regulatory region of the Met
synthesis enzyme cystathionine g-synthase (Loizeau
et al., 2008).

AGRICULTURAL IMPLICATIONS

As Abraham Blum has emphasized (Blum, 2014),
humility and caution are needed when trying to predict
agricultural benefits by extrapolating from the responses
of seedlings of Arabidopsis or other species to short,
sharp stresses in growth chambers (which describes
most of the experiments covered above). With this
warning in mind, what might stress-induced B vitamin
and cofactor deficiency imply for crop breeding and
management? The primary implication is that breed-
ing for enhanced vitamin content (biofortification), by
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transgenic or other approaches, could pay off in terms
of stress resistance as well as human nutrition
(Fitzpatrick et al., 2012). If stress indeed predisposes to
deficiency, a clear prescription for stress resistance
breeding would be to “keep your cofactors safe.”
The two B vitamins most connected with stress re-

sponses, vitamin B6 and thiamin (Fig. 5), are targets
of transgenic biofortification efforts in Arabidopsis
(Raschke et al., 2011; Pourcel et al., 2013; Vanderschuren
et al., 2013; Dong et al., 2015), and stress tests have been
run on the engineered plants, albeit mainly with plant-
lets cultured on agar medium containing Suc (i.e. not
photosynthesizing normally). The total B6 content of leaf
tissue was boosted up to 4-fold and included large
increases in the cofactor pyridoxal 59-phosphate and
pyridoxine-59-b-D-glucoside (Raschke et al., 2011). The
total thiamin content of leaf tissue was boosted up to
3.4-fold, contributed by up to 2-fold increases in the
cofactor thiamin diphosphate and up to 6-fold increases
in thiamin (Dong et al., 2015). The B6-biofortified
plants were larger than controls and more resistant to
paraquat-imposed oxidative stress; no other stress
data were reported (Raschke et al., 2011). The thiamin-
fortified plants showed no change in resistance to salt,
cold, osmotic, drought, or oxidative stress (Dong et al.,
2015). To summarize: These first biofortification re-
sults for B6 and thiamin are inconclusive and merit
follow-up.
Stress-induced B vitamin deficiency also has im-

plications for crop management (Plaut et al., 2013).
Reported benefits of vitamin applications are cited
above; such applications are most likely to be useful in
practice if they can be given as seed-priming treatments
(Al-Hakimi and Hamada, 2001), i.e. applied to seed
before sowing. Such seed treatments are cost-efficient
(Tanou et al., 2012).

FUTURE PERSPECTIVES

The preceding overview of work relating B vitamins
to abiotic stress raises five issues that are listed in the
“Outstanding Questions.” Each issue is developed
briefly below.

Itemizing Stress-Relevant Enzyme Reactions

Although various enzymes and genes for repair or
recycling of damaged vitamins and cofactors are
known, this is still not the case for about half of the
30 damage reactions in Figure 1. While the products
of some of these reactions may have no possible fate
besides complete degradation, comparative biochem-
istry suggests that others may well be reclaimed in
plants; examples include biotin sulfoxide and chain-
shortened biotin (Linster et al., 2013), pyridoxine
and nicotinamide N-oxides (Sakuragi and Kum-
merow, 1960; Shibata et al., 1991), and riboflavin-
4’,59-phosphate (cyclic FMN; Fraiz et al., 1998). We
also don’t knowmost of the enzymes or genes for the

synthesis and mobilization of the vitamin conjugates
in Figure 4, and it is not even clear that we have fully
inventoried the conjugates that plants can make.
Notably, conjugated forms of thiamin and its py-
rimidine and thiazole precursors have not been
reported from plants, but they seem not to have been
sought.

Graduating to Crops and Realistic Stress

As noted previously, most of the modern data
linking abiotic stress with B vitamins and cofactors
comes from young Arabidopsis plants and unreal-
istic stress protocols. This is a generic weakness of
molecular-level stress research, and the resulting
disconnect from agriculture goes a long way toward
explaining why molecular work has had a very lim-
ited impact on breeding for stress environments
(Blum, 2014). It is consequently important to extend
stress/vitamin work from Arabidopsis to good ge-
netic model crops such as tomato, canola (Brassica
napus), maize, and rice and to adopt stress protocols
that mimic field stresses to plants beyond the seedling
stage.

Diagnosing Functional Deficiencies

Vitamin deficiencies, particularly functional ones
affecting only certain cells or compartments, may be
better diagnosed from characteristic changes in me-
tabolite profiles than by directly measuring vitamin
levels, as discussed above for vitamin B12 deficiency
in humans (Stabler et al., 1996). Given the possibility
that direct vitamin measurements can fail to detect
subtle but physiologically critical functional defi-
ciencies, and the high cost and low-throughput na-
ture of many vitamin assays, indirect assessment of
plant vitamin and cofactor status via metabolomics is
appealing. Confirming or disconfirming the validity
of this approach in plants, as in humans (Stabler
et al., 2013), will require prior metabolic profiling
studies of vitamin-deficient mutants. An alternative,
indirect, high-throughput way to detect functional
vitamin deficiencies may be via characteristic tran-
scriptome changes, analogous to the induction of spe-
cific genes bymineral nutrient deficiencies (Nikiforova
et al., 2003; Zheng et al., 2009). Furthermore, tran-
scriptome analysis could uncover mechanisms that
reroute metabolism to mitigate the effects of vitamin
deficiency (see above). Again, evaluation of these
possibilities will require studies of vitamin-deficient
mutants.

Genotypic Variation

Although there is natural genotypic variation in vi-
tamin content (Hanson and Gregory, 2011; Fitzpatrick
et al., 2012), it would be impractical to use vitamin
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content as a selection criterion to develop experi-
mental populations due to the issues of assay cost and
efficacy just outlined. On the other hand, were high-
throughput indirect methods to assess deficiency
available (see above), it would be feasible to assess
vitamin/cofactor status in populations subjected to
realistic stresses and then to work back via genome-
wide association studies to genes governing vitamin/
cofactor status. Once identified, such genes, which
would presumably include known and novel genes
with repair/recycling, synthesis, storage, or bypass
functions, could be used to explore a “keep your
cofactors safe” breeding strategy for abiotic stress
resistance.

Is Thiamin an Achilles’ Heel in Stress Metabolism?

A thread running through thewhole of this review is
that thiamin and thiamin diphosphate are not like the
other B vitamins and cofactors. Thiamin diphosphate
may turn over exceptionally fast, at least in part be-
cause of its unusual feature of catalytic inactivation.
Thiamin is energetically costly to make due to the
suicidal nature of one of its biosynthetic enzymes and
the suicidal tendency of another. Because thiamin
synthesis depends absolutely on concurrent protein
synthesis, it is vulnerable to stress in a way that other B
vitamins are not. Unlike most other B vitamins, thia-
min and its precursors lack known storage forms.
Thiamin synthesis and salvage genes are particularly
highly stress-regulated in Arabidopsis seedlings.
Lastly, thiamin is more prominent than other B vita-
mins in the “spray and pray” literature. Taken to-
gether, these features suggest that thiamin could be an
Achilles’ heel, a crucial weak point, in plant stress
metabolism.

Supplemental Data

The following supplemental materials are available.

Supplemental Table S1. Analysis of Arabidopsis stress literature based on
PubMed search terms.

Supplemental Table S2. Stress-induced B vitamin/cofactor synthesis and
salvage genes in Arabidopsis.
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